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Abstract: The support of PLM throughout the product life, from the product’s 
conceptualization to its disposal, requires reliable, complete and efficient data models. 
The Core Product Model (CPM), initially developed at NIST for a number of in-house 
research projects, has been extended so as to support the full range of PLM information.  
 
CPM gives equal status to three aspects of a product or artifact: its function, form and 
behavior. Thus, CPM can support purely functional reasoning about a product in the 
conceptual stages of design as well as the recording and modeling of its behavior in the 
post-design stage.  
 
CPM is a generic, abstract model with generic semantics. It is defined as a UML class 
diagram.. Three levels of CPM models, denoted as the conceptual, intermediate, and 
implementation models, are described. Extensions of CPM are briefly presented and a 
short illustrative example is given. 
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1 Introduction 
 
The new generation of product modeling concepts and applications is intended to support 
Product Lifecycle Management (PLM) by providing support for product data creation, 
use, storage and communication during all stages of product life, from the product’s first 
conceptualization to its disposal.   
 
To succeed in the mission of supporting PLM, applications need reliable, complete and 
efficient data models. In a PLM environment, actors are submerged in a heterogeneous 
and voluminous information flow. It is paramount to be able to: (i) filter this information; 
(ii) structure it; (iii) integrate and control it; and (iv) channel it so that actors receive and 
manipulate only information pertinent for their task. The correct performance of these 
four activities can not be ensured without a reliable product data model.  
  
The initial objectives of the work presented was to provide a common data model among 
four in-house research and development projects at NIST as well as a base-level data 
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representation for a multilevel design information flow model [1; 2]. The first version of 
the Core Product Model (CPM) responding to these objectives was presented in [3].  
 
As interest in PLM intensified, it became increasingly clear that CPM possesses some of 
the key characteristics needed to support the full range of PLM information. The 
objective therefore became to expand the CPM to serve as the basic, top-level model for 
all product realization information [2].  
 
2 The Core Product Model  
 
2.1 Overview 
 
CPM is a generic, abstract model with generic semantics. Semantics meaningful for any 
particular domain are to be embedded within an implementation model and the policy of 
use of that model.  
 
CPM is based on two principles. First, the key object in the CPM is the artifact. Artifact 
represents a distinct entity in a product, whether that entity is a component, part, 
subassembly or assembly. Second, the artifact is an aggregation of three objects 
representing the artifact’s three principal aspects: 
 
• the artifact’s function describes what the artifact is supposed to do. The artifact 

satisfies customer needs and/or engineering requirements largely through its function.  
The term function is often used synonymously with the term intended behavior. 

• the artifact’s form represents the proposed design solution for the design problem 
specified by the function. The artifact’s physical characteristics are modeled in CPM 
in terms of its geometry and material, because many of the intended applications tend 
to treat these two aspects differently. 

• the artifact’s behavior describes how the artifact’s form implements its function.  
Behavior is governed by engineering principles which are incorporated into a 
behavioral or causal model. Application of the behavioral model to the artifact 
describes or simulates the artifact’s observed behavior. The observed behavior can 
then be examined with respect to the requirements to yield the evaluated behavior. 

 
The suitability of CPM for supporting the product information needs over the full range 
of PLM activities is due to the above three-way partition of a product’s aspects: 
 
• in the early conceptual stages of design, when the product’s form has not yet been 

selected, the function aspect supports reasoning about the requirements on the product 
and the allocation of the expected functions of the product; and  

• in the post-design stages of manufacturing, operation, and maintenance - when the 
form of the artifact is unchanged - its behavior (such as manufacturability, 
operatability, cost or durability) can be modeled, observed, evaluated and recorded in 
the behavior aspect. 
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2.2 Components of CPM  
 
CPM consists of two sets of classes, called object and relationship classes, patterned after 
the Entity-Relationship model [4], equivalent to the Unified Modeling Language (UML) 
classes and association classes, respectively [5]. A UML class diagram of CPM is shown 
in Figure 1. In order to provide a clearer exposition, selected portions of Figure 1 are 
presented separately in Figures 2 through 5. 
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Figure 1. UML class diagram of the Core Product Model 
 
In the text that follows, names of classes are capitalized (e.g., Information) and names of 
attributes are not (e.g., information). 
 
2.2.1 Abstract classes 
 
There are five abstract classes (classes with no instances): 
 
• CoreProductModel represents the highest level of generalization.  
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• CommonCoreRelationship is the base class for all association classes.   
• CommonCoreObject is the base class for all object classes.  
• CoreEntity is the base class from which Artifact and Feature are specialized.  
• CoreProperty is the base class from which Function, Flow, Form, Geometry and 

Material are specialized.  
Figure 2 shows the abstract classes. 
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Figure 2. CPM abstract classes 
 
2.2.2 Object classes 
 
There are eleven object classes: 
 
• Artifact represents a distinct entity in a product, whether that entity is a component, 

part, subassembly or assembly.  
• Feature is a portion of the artifact’s form that has some specific function. An artifact 

may have design features, analysis features, manufacturing features, etc., as 
determined by their respective functions. Feature has its own containment hierarchy, 
so that compound features can be created out of other features (but not artifacts). 

• Port is a specialization of Feature, sometimes referred to as an interface feature, 
through which the artifact is connected to (or interfaced with) other artifacts. 

• Function is what the artifact is supposed to do, that is, its intended behavior. 
• TransferFunction is a specialized form of Function involving the transfer or 

transformation of an input flow into an output flow.  
• Form of the artifact is the proposed design solution for the design problem specified 

by the function, represented in terms of its geometry and material. 
• Geometry is the spatial description of the artifact. 
• Material is the description of the internal composition of the artifact.  
• Flow is the medium (fluid, energy, message stream, etc.) that serves as the output of 

one or more transfer function(s) and the input of one or more other transfer 
function(s). A flow is also identified by its source and destination artifacts. 

• Behavior describes how the artifact’s form implements its function.  Behavior has 
three specialized attributes:  
− the behavioralModel;  
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− the observedBehavior; and  
− the evaluatedBehavior.  

• Specification represents the collection of information relevant to the design of an 
artifact deriving from customer needs and/or engineering requirements.  

• Requirement is a specific element of the Specification that governs some aspect of the 
artifact’s function or form. Requirements cannot apply to behavior, which is strictly 
determined by the behavioral model. 

 
Figure 3 provides a view of the object classes. 
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Figure 3. CPM object classes 

 
2.2.3 Relationship classes 
 
There are four relationship classes: 
 
• Constraint is a specific shared property of a set of entities that must hold in all cases. 

In CPM, only the entity instances that constitute the constrained set are identified.  
• EntityAssociation is a set membership relationship among artifacts, features and ports.  
• Usage is a mapping from CommonCoreObject to CommonCoreObject, particularly 

useful when constraints apply to the specific “target” entity but not to the generic 
“source” entity, or when the source entity resides in an external catalog or design 
repository. 

• Trace is structurally identical to Usage, particularly useful when the “target” entity in 
the current product description depends in some way on a “source” entity in another 
product description. The type attribute of Trace specifies the nature of the dependence 
(alternative_of, version_of, derived_from, is_based_on, etc.). 
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Relationship classes are shown in Figure 4.  
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Figure 4. CPM relationship classes 
The relationships between object classes are shown in Figure 5. 
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Figure 5. Relationships between object classes 
 
2.2.4 Utility classes 
 
There are three utility classes: 
  
• Information is a container consisting of:  

− a textual description slot;  
− a textual documentation string (e. g., a file path or URL referencing more 

substantial documentation); and  
− a properties slot that contains a set of attribute-value pairs stored as a string.  

• ProcessInformation is a container for attributes related to the product development 
process, such as state and  level, as used in [1], alternative and/or version designation 
or other process descriptors. 

• Rationale records explanatory information on the reasons for or justifications of a 
particular decision concerning the artifact.  
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The utility classes are of primary interest in intermediate information models generated 
from the conceptual CPM, as discussed in Section 4.2. 
 
2.3 Associations and aggregations 
 
The following associations are provided: 
 
• all object classes except Flow have their own separate, independent decomposition 

hierarchies, also known as “partOf” relationships or containment hierarchies3.  
• there are associations between:  

− a Specification and the Artifact that results from it;  
− a Flow and its source and destination Artifacts and its input and output Functions; 

and  
− an Artifact and its Features. 

• most importantly, four aggregations are fundamental to the CPM: 
− Function, Form and Behavior aggregate into Artifact;  
− Function and Form aggregate into Feature;  
− Geometry and Material aggregate into Form; and  
− Requirements aggregate into Specification. 

 
3 CPM models 
 
CPM models exist at three levels, denoted as the conceptual, intermediate, and 
implementation models, described below. 
 
3.1 Conceptual model 
 
CPM is conceived as a conceptual model without domain-specific semantics. Thus, CPM 
is limited to attributes required to capture generic product information and to create 
relationships among the classes. CPM intentionally excludes attributes that are domain-
specific (e.g., attributes of mechanical or electronic devices) or object-specific (e.g., 
attributes specific to function, form or behavior).  
 
3.2 Intermediate model 
 
In order to make the conceptual CPM directly usable, two generic information modeling 
concepts have been adopted so as to be able to create intermediate models. 
 
First, each object and relationship has an Information attribute, described in Section 2.2.4. 
The attribute of interest here is the properties slot, where attribute-value pairs record all 
domain- or object-specific attributes.  
 

                                                 
3 For clarity, only the subArtifact/subArtifactOf containment hierarchy of Artifact is labeled in Figures 1 and 3. 
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Second, each object and relationship, except for the abstract and utility classes, has an 
attribute called type, the value of which is a string that acts as a symbolic classifier4. Each 
object and relationship class may have a distinct hierarchical taxonomy of terms 
associated with that class. The value of the type attribute corresponds to one of the terms 
within the taxonomy for the given class. For example, “convert” is one of numerous types 
of transfer functions and the term can serve as the value of the type attribute of an 
instance of the class.  
 
Using the above two modeling concepts, an artifact instance of type “pin” with specified 
length and diameter attribute values is represented in the intermediate model as shown in 
Figure 6. 

 
: Information

properties = "length 5.00 diameter 0.50"

: Artifact
type = "Pin" +information

: Information
properties = "length 5.00 diameter 0.50"

: Artifact
type = "Pin" +information 

Figure 6. A CPM instance with attributes and values 
Such a representation will generally be appropriate and sufficient either for the early 
conceptual phases of design of an artifact, where typically there is a small number of 
instances and few attributes of interest for each instance, or for design repositories, where 
only condensed representations of completed design are stored5. Over time, as 
intermediate models are built up, object and relationship classes in the model may acquire 
their individual generic engineering classification hierarchies. Eventually, these 
taxonomies may be expanded into full ontologies of the terms and their semantic 
relationships. However, this intermediate model will not scale to a full implementation, 
where thousands of instances may occur, each with a long list of application-specific 
attributes. 
 
3.3 Implementation models  
 
For application to industrial-scale systems, the conceptual model of CPM must be 
translated into an implementation model.  This is called model compilation and is a part 
of the overall Model-Driven Architecture (MDA) defined by the Object Management 
Group (OMG) [9].  MDA provides for translation of Platform-Independent Models 
(PIMs), such as CPM, to Platform-Specific Models (PSMs) and for the generation of 
efficient implementation languages.   
 
Implementations based on CPM may use the various type attributes, their underlying 
taxonomies and the attribute-value pairs stored in the entities’ properties slots to provide 
the means for model compilation of domain-specific specializations of the CPM classes. 
Specifically, the model compiler would: 
 

                                                 
4 The semantics of the term type used in this report differs from that of the term “data type” commonly used in computer 

science data structure definitions.  The use of the term type in this report is consistent with the definition used in the FRISCO report: 
“Type (Synonym: 'Category'): A type of things is a specific characterisation (e.g. a predicate) applying to all things of that type” [6] 

5 The NIST Design Repository [7], using a product model closely based on CPM,  contains some fairly substantial designs, such 
as the complete record of the Charters of Freedom enclosures built at NIST [8]. 
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• create subclasses of Artifact from the classification hierarchy in the type slot; and  
• define attributes on the subclasses from the attribute names in the properties slot.   
 
These subclasses could be generated into a UML repository [10], as a PIM, then into a 
compilable language.  This provides flexibility in choosing an implementation language.   
 
Finally, model compilation may be used to translate CPM's delegation-style of reusing 
designs to the type/instance style of computational modeling.  CPM uses Artifact for the 
representation of the information at three different stages in the lifecycle of an artifact: 
 
• description of classes of physical objects, for example, the design of a particular kind 

of gear box; 
• use of the above descriptions in composing designs for other physical objects, for 

example, the use of a particular gear box design in the description of a certain model 
of car; and 

• descriptions of physical objects conforming to the designs above, for example, 
maintenance record for an individual physical gear box, with serial number 3463, 
installed in a particular car with VIN number 92345645. 

 
The use of Artifact for all three reflects the engineer's viewpoint that they represent 
different stages in the lifecycle of the same artifact. Each stage may have different 
attribute values and even different attributes. These stages are differentiated by different 
values in the instances of the ProcessInformation class and related by the Usage 
association in CPM. Computational models, on the other hand, usually have distinct 
elements for each of the above stages, called type (or class), usage (or role), and 
instance.6  These reflect common information system construction practices of using 
program development environments to define the shapes of data structures (types, stage 
1), and monitoring the execution of those programs in a separate debugging environment 
to find the actual data stored in those structures (instances, stage 3).  Modern modeling 
techniques introduce usages or roles to more reliably compose designs (usages, stage 2) 
[12]. Model compilers can bridge the engineering and computational viewpoints by 
storing the rules by which the three stages are distinguished in the engineering model, 
using these to categorize artifacts, and generate the corresponding computational models.   
 
4 Extensions of the CPM 
 
The following extensions to the CPM have been reported: 
 
• the Open Assembly Model (OAM) provides a standard representation and exchange 

protocol for assemblies [13-15]. The assembly model defines both a system level 
conceptual model and the associated hierarchical relationships. The model provides a 
way for tolerance representation and propagation, kinematics representation, and 
engineering analysis at the system level. 

                                                 
6 Some computational models use one element as CPM does, but distinguish the three stages by a special attribute, for example, 

MOOD in the Health Level 7 Reference Information Model [11]. 
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• the Product Semantic Representation Language (PSRL) utilizes CPM for the 
development of a formal representation of product information [16]. Formal 
description logic (OWL) is used to encode the PSRL. 

• the Design-Analysis Integration project proposes a conceptual data architecture that 
can provide tighter integration of spatial and functional design and support analysis-
driven design and opportunistic analysis [17]. CPM serves as the organizing principle 
of the Master Model from which discipline-specific functional models (views) are 
idealized. 

• the Product Family Evolution Model extends CPM to the representation of the 
evolution of product families and of the rationale of the changes involved [18]. The 
model represents the independent evolution of products and components through 
families, series and versions, and the rationale for the changes.  

• the Heterogeneous Material Model extends CPM to components with continuously 
varying material properties [19]. Distance fields are associated with a set of material 
features, where values and rates of material properties are specified.  

• the Mechatronic Device Model is a framework supporting the conceptual design of 
multiple interaction-state mechatronic devices, where the interactions between the 
use-environment and the device can have different qualitative structures [20]. Devices 
within a state are modeled by extensions of CPM. 

• the Embedded System Model is feature-based approach to the co-design of 
hardware and software in embedded systems [21]. The approach defines extensions to 
CPM providing a representation for the embedded system feature model.  

Extensions and implementations of CPM may explicitly assign attributes to 
specializations of the CPM objects and relationships so as to provide interoperability with 
new systems, legacy data models such as STEP, or existing CAD programs. 
 
5. Illustrative example 
 
The planetary gear system example considered in this section was presented in detail in 
[14], where it was used to illustrate the representation of both the Artifact containment 
hierarchy and the assembly associations comprising the Open Assembly Model. Our 
interest here is to show how CPM captures design information about a product; thus, only 
data important from the design point of view are modeled.  
 
Figure 7 shows the components of the planetary gear system (PGS): the main artifact is 
the planetary gear; it is composed of 13 subartifacts: the output housing, the input 
housing, the ring gear, the sun gear, the planet gear carrier and eight screws. Information 
pertaining to the function, form, behavior and specification related to these subartifacts is 
not presented here. 
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Figure 7. The planetary gear system 
Figure 8 shows an instance diagram for the representation of the gear system in CPM. 
The figure shows only the structure of the PGS as an instance of the Artifact class. This 
instance is linked through subArtifact relationships to a set of other instances representing 
the subartifacts of the PGS. The figure also shows instances of the Function, Form, 
Behavior, Specification, and Feature classes. The contents and values of the attributes of 
these instances are not shown.  

planetaryGearSystem : Art ifact

pgsBehavior :  Behavior

changeSpeedRot : Function

pgsSpecif : Specification

form : Form

fasteningHoles : Feature

planetGearCarrier : Artifact

sunGear : Artifact

ringGear : Artifact

inputHousing : Artifact

outputHousing :  Artifact

screw : Artifact

outputShaftHole :  Feature

geo : Geometry

fun : Funct ioncyl : Form
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Figure 8. CPM instance diagram for the planetary gear system  
 
6. Related work 
 
CPM follows the tradition of work in the area of artifact representation. The division of 
artifact information into the categories of form, function, and behavior has its roots in 
earlier work in intelligent design systems. The model is most directly descended from the 
representation developed as part of the NIST Design Repository project [7].  
 
The MOKA project shares the motivation of the CPM [22]. MOKA exploits STEP, KIF 
and other DARPA-related efforts to create an integrated product model for knowledge 
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based engineering. The MOKA modeling language (MML), based on UML, is designed 
to represent engineering design knowledge at a user level for deployment in KBE 
applications. MOKA goes one step further than CPM towards the implementation models 
discussed in Section 4.3 by using the MOCA metamodel as the prototype of domain-
specific application models. The MOKA Product Model supports five distinct views of a 
product: 
• Structure defines the hierarchical decomposition of a product’s structure into parts, 

assemblies, and features. Structure can be physical, logical or conceptual at any stage 
of design; 

• Function defines the functional decomposition of the product and principles of 
solution; 

• Behavior includes a state model of the various states of a product and of the 
transition from one state to another; 

• Technology includes materials and manufacturing process information; and 
• Representation includes any other user-defined technological information, including 

alternate representations of the physical structure.  
 
The similarly motivated Virtual Product Model is a comprehensive effort at developing 
standards for different aspects of product modeling, including functional decomposition, 
product data, design process information and other aspects of product development [23].   
 
The IMPROVE project is a similar large scale effort in the area of process systems 
engineering, where design process information models are integrated with process system 
design information models [24].   
 
7. Summary and conclusions 
 
CPM is a generic, abstract model with generic semantics. It gives equal status to three 
aspects of a product or artifact: its function, form and behavior. Thus, CPM can support: 
(i) purely functional reasoning about a product in the conceptual stages of design; (ii) 
recording and analysis of its behavior in the post-design stages; as well as (iii) the 
“traditional” engineering design activities of generating the product’s form in response to 
the specified function, evaluating the product’s behavior by analysis and simulation, and 
modifying the form until the behavior satisfies the function. 
 
At present, CPM exists as a conceptual model. Extensions at the same conceptual level 
have illustrated that CPM is readily expandable, although some conflicts have been 
detected (for example, in some domains features do have independent behavior, not 
supported by CPM; in other domains, geometry and material are not the appropriate top-
level specializations of form). A few intermediate level models have been generated, 
primarily for illustrative purposes. 
 
The extent to which CPM can serve as the central information support mechanism for 
PLM will be determined by the implementation models developed from the conceptual 
CPM. As indicated in Section 3.3, an extension or application of Model-Driven 
Architecture will be needed to provide both: (i) translation of platform-independent 
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models to platform-specific models; and (ii) expansion of classes and their attributes from 
the domain-independent CPM model to models for specific domains. 
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